Site Search  

Resources » Publication Details

Publication Details


Reference TypeConference Proceedings
Author(s)Edakunni, N. U.;Schaal, S.;Vijayakumar, S.
Year2007
TitleKernel carpentry for onlne regression using randomly varying coefficient model
Journal/Conference/Book TitleProceedings of the 20th International Joint Conference on Artificial Intelligence
Keywordsbayesian weighted regression, variational bayes
AbstractWe present a Bayesian formulation of locally weighted learning (LWL) using the novel concept of a randomly varying coefficient model. Based on this, we propose a mechanism for multivariate non-linear regression using spatially localised linear models that learns completely independent of each other, uses only local information and adapts the local model complexity in a data driven fashion. We derive online updates for the model parameters based on variational Bayesian EM. The evaluation of the proposed algorithm against other state-of-the-art methods reveal the excellent, robust generalization performance beside surprisingly efficient time and space complexity properties. This paper, for the first time, brings together the computational efficiency and the adaptability of Ňnon-competitiveŇ locally weighted learning schemes and the modeling guarantees of the Bayesian formulation.
Place PublishedHyderabad, India: Jan. 6-12
Short TitleKernel carpentry for onlne regression using randomly varying coefficient model
URL(s) http://www-clmc.usc.edu/publications/E/edakunni-IJCAI2007.pdf

Designed by: Nerses Ohanyan & Jan Peters
Page last modified on June 20, 2013, at 07:00 PM